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Monitoring and Evaluation of Human Nutrition and Health Based on

Big Data Analysis
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Abstract

The balanced consumption of nutrients is essential to human health. This research examines human nutrition and health

monitoring and evaluation using extensive data analysis (HHH). Few attempts have been made thus far to harvest and

evaluate HHH monitoring data. To ensure the efficacy of these data, extensive data analysis was conducted to analyze and

monitor HHH. The authors created a Bayesian network (BN) to monitor HHH after describing the HHH optimization

method. The suggested network serves four primary purposes: extracting features from dietary nutrients, classifying foods

according to their best nutritional value, diagnosing undernutrition, and offering replacement suggestions. In conclusion,

a strategy for massive data processing and selecting the primary controlling element was provided for nutrition monitoring.

Experiments demonstrated the relative test error of the proposed network and confirmed its efficacy.
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1. Introduction

The balanced consumption of essential nutrients is crucial,
particularly for children, adolescents, and the elderly
(Bommarito et al., 2019; Lu et al., 2020; Silva et al., 2019;
Sivakumaran, Huffman, & Sivakumaran, 2018; Welis,
2017). Lack of essential nutrients will result in severe
diseases and organ deterioration, leading to significant
health issues. It is crucial to automatically monitor the
nutrient content of the foods delivered to people to
preserve their physical health (Comber et al, 2012;
Hoefkens et al., 2010; Jones, 2010; Levenhagen et al., 2001;
Nicklas et al., 2012; Ohara et al.,, 2008; Tordoff, 2002;
Velasco-Ryenold et al., 2008). The quality and amount of
personal monitoring data have been enhanced for quite
some time. The vast digital data reflects individual and
social characteristics (Gupta, Chakraborty, & Gupta, 2019;
Li, Lin, & Xu, 2019; Rahaman et al., 2019; Yan et al., 2019).
Regarding human nutrition and health (HHH) monitoring,
big data and data mining have increased the sensing range
and execution effectiveness of healthy diet solutions.

Ng and Jin (2017) built a personalized recipe suggestion
system for infants that pushes dishes to infants based on the
original data acquired from user archives and MyPlate. Not
only do the words offer newborns the required nutrients
from various food categories, but they also help them
develop healthy eating habits. Tucker (2016) suggested that,
as people age, nutritional status is a key factor in the decline
of cognitive function. He also provided evidence for the
essential roles of vitamin B. He demonstrated that a healthy
diet model (i.e., maximizing the intake of fish, fruits,
vegetables, nuts, and seeds while limiting the intake of

sugar) could significantly slow down and mitigate the
decline of cognitive function. Villalobos et al. (2011)
developed an intelligent method to track obese individuals'
caloric consumption. The system analyzes the surveillance
images to identify food classes and components and then
calculates calorie counts based on the detection results.
Hoefkens et al. (2009) viewed dietary intake evaluation as
a two-step process, including collecting and evaluating data
on food components. They combined these data with food
consumption data to create a database about the nutrients
and pollutants in organic and conventional vegetables and
potatoes. Shimbo et al. (1996) evaluated the daily dietary
intake of 28 trace elements in food consumption data,
compared the estimates with the reported values of 15
elements, and then drew the appropriate conclusions.
Rodriguez-Palmero et al. (1998) evaluated the components
in 43 food samples from a nursing home and estimated the
calorie, fat, polyunsaturated fatty acid (PUFA), cholesterol,
potassium, and phosphorus intakes with precision.
Currently, local research on healthy diets and food
nutrition analysis is comparatively developed. Few,
however, have mined or studied the HHH monitoring data.
To ensure the efficacy of these data, this research monitors
and evaluates HHH using extensive data analysis.

Our research offers a framework for exchanging and
sharing HHH monitoring data. This work concludes the
construction of an application platform for HHH
monitoring services using extensive data analysis. Using
the Internet as a medium, the suggested platform can offer
a personalized healthy diet to exercise enthusiasts and
allow administrators to query for and statistically evaluate
the health test results from various locations.
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Section 2 describes the HHH optimization approach in full. In
Section 3, a Bayesian network (BN) is constructed to monitor
HHH, which can extract characteristics from food nutrients,
classify foods by their highest nutritional value, diagnose
undernutrition, and provide replacement recommendations.
Section 4 presents a system for massive data processing and a
method for selecting the primary controlling factor for human
nutrition monitoring. Experiments validated the efficiency of
the proposed approach.

2. Methodology

2.1 Optimization of HHH

Nutritional sufficiency results from adhering to the
fundamental criteria of a healthy diet. According to sources
such as the European Journal of Epidemiology, an
unregulated diet is the primary cause of most human
disorders that diminish life expectancy. Monitoring the
calorie input and output of daily foods, a crucial aspect of

health care, addresses the nutrition imbalance. This
research focuses on monitoring and evaluating HHH using
extensive data analysis.

Based on the nutrients of various foods in Table 1, which
contains more than 20 nutrients, as well as the nutrients
and calories of over 580 typical foods, the general situation
of food nutrients was reviewed. Here, the common foods
are separated into 12 categories: staple food FC1, meat and
eggs FC2; soybeans and their products FC3; vegetables,
algae, and fungi FC4; fruits FC5, milk FC6, lipid FC7, nuts
FC8, condiments FC9, beverages FC10, snacks and cold
drinks FC11, and others FC12. Table 1 also includes the
amount of proteins, lipids, carbs, and cholesterol in 100g of
each food and the glycemic index (GI) and glycemic load
(GL) for each food. The suitable amount of each food
should be defined based on food class and characteristics
so that large data sets of food nutrients may be applied to
dietary health evaluation and recommendations for the
general population.

Table 1
Nutrients of some foods
Food Calorie  Proteins Carbohydrates Fats Cholesterol Iron Calcium ...
Egg (100g) 139 13.1 24 8.6 0.648 1.6 0.056
Pork (100g) 143 20.3 1.5 6.2 0.081 0.003 0.006
Bread (100g) 313 8.3 58.6 5.1 / 0.002 0.049
Spinach (100g) 28 2.6 4.5 0.3 / 0.0029  0.066
Soybean sprouts (100g) 47 4.5 45 1.6 / 0.0009  0.021
Table 2 the objective function of human nutrient and health
Critical features of food nutrients evaluation. Let b; be the mass of food j; rj; be the content of
Nutrient Description element 1 in food j; R’ be the daily content of element |
PRO, Protein content k required by the human body. Then, we have:
LIP, Lipid content k (R — Xhoymy bj)2 - min (2)
LIP, Carbohydrate content k The total mass U of the daily food intake by the human
ggg ‘” g:;ﬁiezg};z;tim k body can be derived from the mass of each food consumed
SATu’ Saturated fat content k on each day:
U= Z7=1 bj (3)

Table 2 characterizes the core food nutrients with protein
content k PRO,, lipid content LIP,, carbohydrate content
LIP,, cholesterol content CHO,, sodium content SOD,,, and
saturated fat content SAT,. Then, the key features of type u
food can be described as:

&, = (PRO,, LIP,,CARB,,CHO,,SOD,,,SAT,,--) (1)
The body state, the number of adipose tissues, and the
number of muscle tissues of the object were estimated
against the standard reference model of daily nutrient
intake. The minimum deviation of indices (nutrients and
calories) from the standard reference model was defined as

where, b/"" and b/ are the upper and lower limits on the
daily allowable intake volume of food j, respectively. Then,
we have:

b"™ < by < bJ* )
Besides food mass and element content, it is important to
fully consider whether the digestibility, edible value, and
health value of foods meet the dietary and age needs of the
human body. This paper estimates the deviations of the
object from specific groups of people, ie., children,
adolescents, adult males, adult females, and the elderly, in
terms of the daily nutrient intake measured by the standard
reference model (Table 3).
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Table 3
The standard reference model for daily nutrient intake of the human body (adolescents)
Food class Food Name
FC1 Rice (80g), noodles (100G), steamed buns (50g)
EC2 Eggs (50g), fish (60g), pork (60g)
FC4 Spinach (100g), lettuce (50g), broccoli (100g), mushrooms (50g)
FC5 Apples (100g), kiwi fruits (100g)
FCé6 Yoghurt (250g)
FC8 Walnuts (20g), cashews (20g), almonds (10g)
Let ay, a°; and Aa®; be the actual value, reference value, and P(C|D) = PcoD) fP(D)#0 (6)
P(D)

tolerance of index j of standard reference model i,
respectively; c;=(a;-a;°)/Aa’; be the relative deviation of
index j of standard reference model i; g; and r; be the set of
significant coefficients and index j of standard reference
model i, respectively; ¢; be the coefficient of the relative
deviation for the content of element 1 from the overall
standard reference model. Then, we have:

H=H7=’1(1—Cf)-[ oy (1— /izjﬁlri,-cfj)] (5)

2.2 BN-based HHH monitoring

Constantly evolving with the times, information
technology has a significant impact on the economic and
social growth of the world. Globally, a new generation of
information technology, including big data and machine
learning, has arisen in the Internet framework. Advanced
information-based health assessments are gradually
replacing the old nutrition and health tests at all grade
levels and classrooms. Numerous nations exert great effort
to actualize data sharing and exchange, informatize health
tests, and promote scientific health management. To
implement scientific HHH monitoring, enhance relevant
databases, and encourage scientific exercise among the
populace, it is essential to leverage big data and improve the
following areas of national nutrition and health monitoring:
data interchange and sharing and nutrition and health tests.
This work offers a BN-based algorithm for HHH
monitoring that covers four essential functions: extracting
characteristics from food nutrients, classifying foods by
their best nutritional value, diagnosing undernutrition,
and offering replacement suggestions. Figure 1
demonstrates the flow of the suggested method.

The structure of BN can be formed using either the search for a
scoring function or the determination of condition dependency.
The latter technique was used for the HHH monitoring
application scenario. Let P(CD) represent the likelihood that
food class C and food name D occur together. The conditional
probability P(C|D) of food classes C and D is the chance that
the object requires food class D, given the likelihood that the
object requires food class C. The connection between P(CD)

and P(C|D) can be expressed as follows:

Computing the mass of food intake

v

Determining the type of foods

v

Gathering the nutritional
values of foods

Information of food
nutrients

Standard reference model
of daily nutrient intake

Computing the nutrient deficit of
food intake

Compuiing the nutrients of
the next meal based on those
of the current meal

y

Recommending
replacements based on
feedbacks from object

Figure 1. The flow of our HHH monitoring algorithm

Classification results on
food intake based on
highest nutritional value

Figure 2. Topology of our neural network
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Formula (6) characterizes the joint distribution of the
discrete variables and conditional probabilities of a group
of food nutrients. Let P(w) be the prior probability; P(w|A)
be the posterior probability, which characterizes the
assumed association of each nutrient variable A in the
model. Then, P(w|A) can be expressed as:

P(wl4) =532 P(w) 7)

The likelihood ratio is the factor linking the two
probabilities P(w) and P(w|A). The key parameters were
determined based on the prior distribution for the BN-
based 4-layer sensor neural network. Figure 2 shows the
topology of the proposed neural network. Each layer owns
interconnected nodes with an activation function in the
layered network.

Let A; be the output of the input layer, Q;; be the connection
weight of hidden layer nodes, and E; is the input of the
output layer. The input layer is connected with the output
layer via the hidden layer. The relationship between A; and
E; can be expressed as:

E; = X%, Quid; (8)
The output B; of the neural network is connected with E;
via activation function AF:

B; = AF(E;) )
When AF is a linear activation function, the neural
network can be viewed as a multilayer sensor. The weights
can be updated based on target output and actual output.
Let Q(m) and Q(m-1) be the weight vectors before and after
the update, respectively; a(m) be the input corresponding
to the output b(m); e(m) be the target vector; § be the preset
step length of network learning. Then, Q(m) can be
updated by:

Q(m) = Q(m — 1) + 6(e(m) — b(m)) -a(m)  (10)
During network training, the connection weights of
network nodes are updated continuously to minimize the
deviation in formula (5) and make it converge quickly. This
paper adopts a gradient descent algorithm to train the
neural network for nutritional balance. The actual gradient
is approximated in the neural network by the point
gradient. Each time, the gradient descent algorithm only
processes the data of one row of nodes and makes
predictions through network training. Let O, be the hidden
layer output; M is the number of input-output pairs. Then,
the network with the input a, and the output b, is iteratively
updated to minimize the mean squared error [MSE(m)]:
[MSE(A)] = = (ZM,(0, — by)?) (11)
Let 1 be the learning rate. Based on formula (11), the
increment of the weight Q% of node m on layer o in sensor
n can be calculated by the gradient descent method:

OMSE(A)
Anm = 155
nm
The deviation of layer o in sensor n can be calculated by:

(12)

frg = - 22 (13)
The proposed HHH monitoring model combines the
merits of the probability model and functional

approximation. The model structure classifies foods based
on the highest nutritional value. It judges the nutritional
balance of the object's food intake under the structural
advantage of a multilayer sensor neural network. The
relationship between food nutritional features can be
described as a directed edge. That is, the possibility of
meeting the goal of food intake depends on the intake of a
class of foods. For example, the probability of yoghurt
belonging to milk foods can be determined by the
conditional probability below:

P(Yog|d—
P(d ~ glYog) ="CHLP(d ~ g) (14)

The conditional probability in formula (14) is a posterior
probability, which depends on the probability of intaking
milk foods.

2.3 Big data processing and primary control factor
selection

(1) Abnormal data processing

The collection and transmission of big data on human
nutrition monitoring could be disturbed by some non-
human factors, causing data abnormality. From the data
mining angle, the monitoring model's final upper bound,
to a certain degree, hinges on the effect of data
preprocessing and feature selection. It is necessary to take
some measures to ensure the completeness and accuracy of
the dataset.

Following traditional statistics, this paper defines the
abnormal values of the big data on human nutrition
monitoring as the data beyond 1.5 times the interquartile
range from the upper and lower quartiles. Let Rq, Q;, and
Qr be the interquartile range, lower quartile, and upper
quartile, respectively. Then, we have:

Rig =Qu—0, (15)
The abnormal values of the big data on human nutrition
monitoring satisfy the following screening conditions:
VALoyr < Q, — 1.5Ryq (16)
VALoyr > Qu + 1.5R g (17)
The identified abnormal values in the big data can be
replaced or removed. During the human nutrition
monitoring, almost all data were measured from the diets
of all objects in the same period. There were overlaps and
couplings between human nutrition indices owing to the
difference in food intake. Therefore, handling abnormal
values should not focus on only the independent features
of a single nutrient. Hence, this paper resorts to the
density-based outlier detection algorithm to judge the
abnormal values of human nutrition monitoring with
obvious overlaps and couplings.
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Let W be an n-dimensional set of m human nutrition
samples (VA ;=(aq ap, ..., aw)ER, i =1, 2, ..., m). For any
two samples A; and A; in W, the Euclidean distance between
the two can be defined as:

DIS(Ay A7) = [Zi (45, 41)° (18)
For convenience, the K-th nearest sample to a given
sample T was defined as the K-th distance of that
sample; the K closest sample to sample T was defined
as the K-th distance neighborhood of that sample; the
maximum of the distance between samples T and O
and the k-th distance of T was defined as the
reachability distance of T.

In the outlier detection algorithm, the K-th distance of a
given sample T can be defined. Assuming that &(T)=&(T,
0), then the K-th distance of T needs to satisfy at least two
constraints:

(1) There exist at least K samples O'€ W\{T} making &(T, O')
<&(T, 0);

(2) There exist at most K-1 samples O'€e W\{T} making
E(T, O) < T, 0), i.e., sample O is the K-th nearest
sample of T. Figure 3 shows the 6th distance
neighborhood of sample T.

The K-th distance neighborhood NAk(T) of sample T can
be defined as:

NAg(T) = {0 € W{T}| (T, 0 < & (T)) (19)
The K-th reachability distance &(T, O) from the given
sample O to T can be calculated by:

& (T, 0) = max(& (T, 0),&(T,0)) (20)
Figure 4 shows the 9% reachability distance of sample T.
Formula (20) shows that &(T, O) is at least the K-th
distance of sample T. The local reachability density (LRD)
can be calculated by:

6,(T) = 1 _ K
t Yoenagm k(TO0)/K  Toenay(r)$k(T.0)

(21)

Figure 3. The 6" distance neighborhood of sample T

Figure 4. The 9" reachability distance of sample T

Formula (21) shows that the mean reachability density
(MRD) of sample T is the reciprocal of the MRD of all
samples in the K-th distance neighborhood of T. If the
MRD of all samples in the K-th distance neighborhood of
T is large, then the reachability density will be small. It is
impossible to judge if the data in T are abnormal based on
reachability density alone. The densities of the other
samples in the K-th distance neighborhood of T should be
considered to facilitate the judgement.

The local outlier factor (LOF) of sample T can be calculated by:

ZOENAK(T)ZK—%
OF (1) = ——2£Lok® (22)
Formula (22) shows that the LOF of sample T is the mean
of the sum of the density ratios of the other samples in the
K-th distance neighborhood of T.

(2) Factor analysis

The most prominent difference from other data types for
human nutrition data is the apparent overlaps and couplings
between human nutrition indices, owing to the difference in
food intake. If the monitoring model is directly trained on the
collected data, the features of some indices might be extracted
repeatedly. For example, digestibility and protein content are
closely correlated in human nutrition data. Suppose the two
indices are imported to the monitoring model for training. In
that case, the model will become much more complex, the
training will become inefficient, and the prediction and
monitoring will be less stable and accurate. To solve the
problem, this paper carries out factor analysis to reduce the
dimension of the big data of human nutrition. The
information of the original sample set was expressed with a
few common factors, and the nutrient intake was predicted
and evaluated against the available features of food nutrients.
Figure 5 shows the flow of factor analysis-based dimension
reduction.
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Figure 5. The flow of factor analysis-based dimension reduction

It is assumed that each sample has w indices for the given
human nutrition sample set W. Then, W can be written as

an mxw- dimensional matrix.
a;; o Ay

A= : l = lay, ay,as,...,a,] (23)
Am1 " Amw

Column i of matrix A can be described as a,=(ay;, az;, as;, ...,

ami)T. After normalization, the matrix can be rewritten as:
i1 " CGw

C = (24)

Cm1 " Cmw '
Let ¢; be any element in the normalized matrix; a; and E;
be the mean and standard deviation of index j, respectively.
The dimensional and value differences can be eliminated
through normalization:
!
aji—a;;
cijz% i=12,...mj=12,...,w (25)
j

where, a; and E; can be calculated by:

1 1 2
)= Ly B = (L5 - ) (26)

The factor loadings matrix G can be solved by the principal

components of the covariance matrix based on matrix C.
Let 7 be the principal components obtained after
dimension reduction of the w indices of the original sample
set. Then, matrix C can be expressed as C=GA+¢, where
special factor ¢=DxS (D= diag(d,, d,, ..., dy), and V=(V,
Vi, ooy Vi)T). Let element gj of factor loadings matrix G
denote the loading of index i on factor j. Then, matrix C
contains the following elements:

€ = guT1 + GipTot... +ginTn + d;V; (27)
The CVE £ of common factor n to index i can be calculated
by:

fit = gk + gh+-. +gin (28)

Let y; be the variance of the special factor. The variance of
factors other than factor i can be expressed as:

VAR, = f7 + v} (29)
The correlation coefficient matrix Z of the normalized
matrix (24) can be solved as follows:

=F (30)

Zm1 " Zmw

Each element in matrix Z can be calculated by:
N T (ai—ai)(aij-a;)
u- m N2 sm "2

\/Zl=1(ali_ai) 2izs(ay—a;)

The next is solving the covariance matrix's eigenvalues and

z (31)

eigenvectors (30). Suppose Z-uI=0, it is possible to derive
the eigenvectors vy, v,, ..., vy, of eigenvalues yy, ta, ..., t-
Then, factor loadings matrix G can be expressed as:

G= (\/Evl,\/ﬁvz,...,m%) (32)
Finally, y; can be estimated according to the elements on
the diagonal Z—GG™:

vl =1-Xj.4gj (33)

3. Results

The original human nutrient data include 26 indices:
calories, proteins, fats, carbohydrates, dietary fibers,
vitamins A, C, E, carotene, Bl, B2, niacin, cholesterol,
magnesium, calcium, iron, zinc, copper, manganese,
potassium, phosphorus, sodium, selenium, rate of
consumption, edible value, and health value. The
dimensions of these indexes' data were lowered by factor
analysis. Table 4 summarises the eigenvalues and CVEs of
the covariance matrix for the original sample set.

Table 4
Eigenvalues and CVEs
Principal Bigenvalue Varia'nce CVE
component explained

1 3.526 31.679 30.125
2 2.572 21.524 51.762
3 1.765 14.346 65.234
4 1.274 10.729 75.826
5 1.031 8.694 84.894
6 0.475 3.642 87.092
7 0.362 3.005 92.854
8 0.286 2.46 95.748
9 0.218 1.634 95.246
10 0.162 1.72 97.634
11 0.197 1.426 98.912
12 0.0523 0.475 100.2
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The first five main components explained 84.89 percent of
the total variation, as seen in Table 4. Figure 6's scree plot
of principal components indicates that the first five
principal components account for most of the information
in the original sample set, as their eigenvalues are all greater
than 1.5. Therefore, this research selects the first five major
components to decrease the original sample set's
dimensions.

(=}

Eigenvalue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Serial number of principal components

Figure 6. Scree plot of principal components

Table 5's factor loadings matrix displays the links between
each index in the initial sample set and the five selected
main components. The first principal component has a
characteristic root of 3.526 and is substantially associated
with calories, proteins, lipids, and vitamin A. The second
principal component has a characteristic root of 2.572 and
is closely associated with vitamin B and calcium. The third
principal component has a characteristic root of 1.765 and
is closely associated with carbs. The fourth principal
component has a characteristic root of 1.274 and is closely
associated with carotene and cholesterol. The fifth main
component has a characteristic root of 1.031 and is closely
associated with proteins and dietary fibre.

Table 5

Factor loadings matrix

Principal component

Index 1 2 3 4 5
Calorie 0.678 0.457 0.312 0.043 -0.035
Proteins 0.524 -0.162 0.249 -0.125 0.706
Fats 0.679 0.138 -0.164 0.219 0.421
Carbohydrates 0.023 0.263 0.762 0.202 -0.385
Dietary fibers  -0.579 0.451 0.185 -0.238 0.456
Vitamin A 0.873 0.289 -0.271 -0.56 0.253
Vitamin C -0.529 0.354 0.439 -0.193 0419
Vitamin E -0.374 0.367 -0.251 0.256 0.042
Carotene 0.026 -0.235 0.435 0.762 0.351
Vitamin B -0.343 0.741 -0.192 -0.63 0.047
Cholesterol -0.271 0270 -0.276 0.785 -0.065
Calcium -0.293 0.526 -0.361 0.271 -0.271
Iron -0.213 0.501 -0.331 0.215 -0.215

Using factor analysis to reduce the dimensionality of the
original sample set, eleven human nutrition parameters
were chosen to analyze the primary indices of HHH:
calories, proteins, lipids, carbs, dietary fibers, vitamins A,
B, and C, and cholesterol.

MSE

3&6 4&6 5&8 T&9 8&10  O&11  10&W0 11&12  12&14
Combinations of hidden layer nodes

Figure 7. MSEs at different settings of hidden layer nodes

Figure 7 depicts the model prediction impacts evaluated by
the MSEs for various hidden layer node settings.
Combinations of the number of nodes on two hidden levels
comprise the x-axis. The model's MSE was reduced,
indicating that the prediction was most accurate when the
two hidden layers included 12 and 14 nodes, respectively.
Consequently, our model's architecture was configured as
follows: an input layer of 10 nodes, an invisible layer of 12
nodes, a hidden layer of 14 nodes, and an output layer of 1
node.

Through Bayesian regularization, the weights and
thresholds of the created neural network were calculated in
this study. Figure 8 demonstrates the MSE fluctuation of
the BN-based HHH monitoring model as a function of the
number of iterations. After the 34th iteration, the suggested

BN was largely stable.

12

1.16

112

MSE

108

1.04

0 10 20 30 40 50 60
Number of iterations

Figure 8. MSE variation with the number of iterations
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Figure 10. Relative errors of our model on the test set

To further validate the class prediction effect of our model,
100 sets of human nutritional samples were imported into the
trained BN-based model as test samples. Figure 9 depicts the
outcomes of our model's application to the test set. Figure 10
illustrates the relative mistakes of the classification based on
the highest nutritional value relative to the ground truth. The
suggested model achieved a favorable prediction effect on the
test set: the mean relative error was less than 15%, and the
prediction accuracy was satisfactory.

The above numbers indicate that our model's errors were
within 10%. On the same dataset, the maximum relative
error of our model was 9.7%, which is barely half that of the
genetic algorithm-optimized deep learning network. Thus,
the suggested model is more resistant to sounds and
disturbances and makes more accurate predictions than
the reference model.

References

4. Conclusions

This research assesses and monitors HHH using big data
analysis. After describing the HHH optimization method,
the authors developed a BN-based model capable of
extracting characteristics from dietary nutrients,
classifying foods by their highest nutritional value,
recognizing  undernutrition, and  recommending
replacements. The authors then explained how to process
massive amounts of data on human nutrition and pick the
primary control variables. The dimensions of the data on
26 indices were reduced through factor analysis. The
eigenvalues and CVEs of the original sample set's
covariance matrix were calculated and summarized. To
examine the primary index of HHH, eleven human
nutrition parameters were selected: calories, proteins,
lipids, carbs, dietary fibers, vitamin A, carotene, vitamin B,
cholesterol, and calcium. After obtaining the MSEs of our
model under various configurations of hidden layer nodes,
the topology of the proposed neural network was
completed using these values. The fluctuation of the MSE
concerning the number of iterations indicates that our
model achieves a good prediction effect and a high
prediction accuracy on the test set.

Our research results not only expand the theoretical
underpinnings of big data but also give a standard scheme
for HHH monitoring data, thereby setting the groundwork
for data sharing and interchange. In addition, the authors
built a thorough evaluation model for HHH, a
recommendation model for exercises, and a platform for
HHH monitoring services. These tools support the
efficient use of data and enhance the government's service
capabilities.

Future research will delve deeply into the following issues
to advance the related work and improve HHH monitoring:
(1) The BN was chosen to evaluate HHH data for large data
scenarios, and the accuracy of various models was tested. It
is suggested that future studies study the genetic
algorithm's search process, properly design the algorithm's
hyperparameters, and enhance the prediction accuracy. (2)
Our tests were conducted in rapid succession (1 day). After
the program has been operational for an adequate period,
there will be sufficient data for research. The study
duration should then be chosen by adjusting the intervals
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